Preview

Eurasian Journal of Economic and Business Studies

Advanced search

Spatial Zoning of Agrotechnological Hubs in Kazakhstan: Developing a Methodological Framework

https://doi.org/10.47703/ejebs.v69i3.539

Abstract

The development of Kazakhstan's agro-industrial complex requires the search for practical tools for the territorial location of innovation infrastructure. The purpose of this study is to develop a methodology for spatial zoning of agro-technological hubs in Kazakhstan based on quantitative assessment of innovation and agricultural potential of regions. The study uses microdata from World Bank Enterprise Surveys for 2024 on the formal agroindustrial sector and related industries, including processing, production, agricultural machinery and services. Using ten indicators normalised using the min–max method and aggregated with equal weights, it was constructed integral indicators such as the Innovation Potential Index (IPI) and the Agricultural Production Potential Index (API). The average values for these indices vary from IPI=0.052 to API=0.240 for the least developed regions and IPI=0.231 to API=0.413 for the most developed ones. The results showed that areas with high potential require consolidation of hubs, development of applied research, and development; territories with medium potential need technology transfer mechanisms, management practices; and regions with low potential need basic competencies formation, digitalization and modernization of infrastructure. The method is replicable and transportable to future WBES waves; limitations include the focus on the formal sector (WBES does not cover primary farms and informal units), as well as the cross-sectional design. Overall, the methodology can be used to monitor the dynamics of regional development and inform strategic adaptation, and it can be applied to future waves of WBES and other countries' industries.

 

About the Authors

Nurbakhyt Nurmukhametov
Korkyt Ata Kyzylorda University, Kyzylorda, Kazakhstan.
Kazakhstan

Cand. Sc. (Econ.), Associate Professor, Email: nyrbahit73@mail.ru



Alexander Tsoy
University of International Business named after K. Sagadiyev, Almaty, Kazakhstan.
Kazakhstan

Researcher, Email: alt-kct@mail.ru



Meiirzhan Abdykadyr
University of International Business named after K. Sagadiyev, Almaty, Kazakhstan.
Kazakhstan

Researcher, Email: meiirzhanabdykadyr@gmail.com



References

1. Abdullah, A. J., Doucouliagos, H., & Manning, E. (2015). Does education reduce income inequality? A meta‐regression analysis. https://doi.org/10.1111/joes.12056 DOI: https://doi.org/10.1111/joes.12056

2. Audretsch, D. B., & Feldman, M. P. (1996). R&D spillovers and the geography of innovation and production. American Economic Review, 86(3), 630–640. https://www.jstor.org/stable/2118216

3. Becker, W., Saisana, M., Paruolo, P., & Saltelli, A. (2017). Weights and importance in composite indicators: Closing the gap. Ecological Indicators, 80, 12–22. https://doi.org/10.1016/j.ecolind.2017.03.056 DOI: https://doi.org/10.1016/j.ecolind.2017.03.056

4. Caliński, T., & Harabasz, J. (1974). A dendrite method for cluster analysis. Communications in Statistics, 3(1), 1–27. https://doi.org/10.1080/03610927408827101 DOI: https://doi.org/10.1080/03610927408827101

5. Cirera, X., Fattal, R., & Maemir, H. B. (2016). Measuring firm-level innovation using short questionnaires. World Bank Policy Research Working Paper. https://openknowledge.worldbank.org/server/api/core/bitstreams/ 1f1b3ecd-731e-57af-be8f-e1cf95695116/content

6. Cooke, P. (1997). Regional innovation systems: Institutional and organisational dimensions. Research Policy, 26(4–5), 475–491. https://doi.org/10.1016/S0048-7333(97)00025-5 DOI: https://doi.org/10.1016/S0048-7333(97)00025-5

7. Cooke, P. (2001). Regional innovation systems, clusters, and the knowledge economy. Industrial and Corporate Change, 10(4), 945–974. https://doi.org/10.1093/icc/10.4.945 DOI: https://doi.org/10.1093/icc/10.4.945

8. Delgado, M., Porter, M. E., & Stern, S. (2014). Clusters, convergence, and economic performance. Research Policy, 43(10), 1785–1799. https://doi.org/10.1016/j.respol.2014.05.007 DOI: https://doi.org/10.1016/j.respol.2014.05.007

9. Enterprise Surveys. (2024). Home Enterprise Surveys. World Bank. Retrieved from https://www.enterprisesurveys.org/en/enterprisesurveys

10. Fang, G., Sun, D., Yu, Y., & Zhang, Z. (2025). A landscape-clustering zoning strategy to map multi-functional cropland. Agriculture, 15(2), 186. https://doi.org/10.3390/agriculture15020186 DOI: https://doi.org/10.3390/agriculture15020186

11. Greco, S., Ishizaka, A., Tasiou, M., & Torrisi, G. (2019). On the methodological framework of composite indicators. Social Indicators Research, 141, 61–94. https://doi.org/10.1007/s11205-017-1832-9 DOI: https://doi.org/10.1007/s11205-017-1832-9

12. Jin, X. (2011). K-means clustering. In Encyclopedia of Machine Learning. Springer. https://doi.org/10.1007/978-0-387-30164-8_425 DOI: https://doi.org/10.1007/978-0-387-30164-8_425

13. MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability (pp. 281–297). University of California Press. https://matteucci.faculty.polimi.it/Clustering/tutorial_html/ kmeans.html?utm_

14. Malerba, F. (2002). Sectoral systems of innovation and production. Research Policy, 31(2), 247–264. https://doi.org/10.1016/S0048-7333(01)00139-1 DOI: https://doi.org/10.1016/S0048-7333(01)00139-1

15. Manatovna, T. A., Dabyltayeva, N. E., Ruziyeva, E. A., Sakhanova, G., & Yelubayeva, Z. M. (2023). Unlocking intersectoral integration in Kazakhstan’s agro-industrial complex: Technological innovations, knowledge transfer, and value chain governance as predictors. Economies, 11(8), 211. https://doi.org/10.3390/economies11080211 DOI: https://doi.org/10.3390/economies11080211

16. OECD & Joint Research Centre. (2008/2005). Handbook on constructing composite indicators: Methodology and user guide. Paris: OECD Publishing. https://doi.org/10.1787/9789264043466-en DOI: https://doi.org/10.1787/9789264043466-en

17. OECD. (2013). Agricultural Innovation Systems: A framework for analysing the role of the government. Paris: OECD Publishing. https://doi.org/10.1787/9789264200593-en DOI: https://doi.org/10.1787/9789264200593-en

18. Porter, M. E. (1998). Clusters and the new economics of competition. Harvard Business Review, 76(6), 77–90.

19. Reyes, F., et al. (2023). Soil properties zoning of agricultural fields based on a K-means clustering analysis. European Journal of Agronomy, 150, 126930. https://doi.org/10.1016/j.eja.2023.126930 DOI: https://doi.org/10.1016/j.eja.2023.126930

20. Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53–65. https://doi.org/10.1016/0377-0427(87)90125-7 DOI: https://doi.org/10.1016/0377-0427(87)90125-7

21. Stojanova, S., et al. (2022). Rural Digital Innovation Hubs as a Paradigm for Sustainable Business Models in Europe’s Rural Areas. Sustainability, 14(21), 14620. https://doi.org/10.3390/su142114620 DOI: https://doi.org/10.3390/su142114620

22. Taishykov, Z. (2024). Management of innovation processes in agriculture. World Development Perspectives, 33, 100509. https://doi.org/10.1016/j.wdp.2024.100566 DOI: https://doi.org/10.1016/j.wdp.2024.100566

23. Tkacheva, A., et al. (2024). Problems and Prospects for the Development of Cluster Structuring in the Economy of Kazakhstan’s Agricultural Sector: Theory and Practice. Economies, 12(7), 185. https://doi.org/10.3390/economies12070185 DOI: https://doi.org/10.3390/economies12070185

24. Toillier, A., Mathé, S., Saley Moussa, A., & Faure, G. (2022). How to assess agricultural innovation systems in a transformation perspective: A Delphi consensus study. The Journal of Agricultural Education and Extension, 28(2), 163–185. https://doi.org/10.1080/1389224X.2021.1953548 DOI: https://doi.org/10.1080/1389224X.2021.1953548

25. Wandel, J. (2010). The cluster-based development strategy in Kazakhstan's agro-food sector: A critical assessment from an Austrian perspective, Discussion Paper, No. 128, Leibniz Institute of Agricultural Development in Central and Eastern Europe (IAMO), Halle (Saale). https://nbn-resolving.de/urn:nbn:de:gbv:3:2-10641

26. World Bank. (2012). Agricultural Innovation Systems: An Investment Sourcebook. Washington, DC: World Bank. https://documents1.worldbank.org/curated/en/140741468336047588/pdf/672070PUB0EPI006 7844B09780821386842.pdf?utm_

27. World Bank. (2013). Kazakhstan Fostering Productive Innovation Project. Washington, DC: World Bank. http://documents.worldbank.org/curated/en/410881468039550416

28. World Bank. (2020). Innovation in Kazakhstan: From ideas to impact [Video]. Washington, DC: World Bank. https://www.worldbank.org/en/news/video/2020/04/14/innovation-in-kazakhstan-from-ideas-to-impact?utm_

29. Yuan, Y., Shi, B., Liu, X., Tian, Y., Zhu, Y., Cao, W., & Cao, Q. (2022). Optimization of management zone delineation for precision crop management in an intensive farming system. Plants, 11(19), 2611. https://doi.org/10.3390/plants11192611 DOI: https://doi.org/10.3390/plants11192611


Review

For citations:


Nurmukhametov N., Tsoy A., Abdykadyr M. Spatial Zoning of Agrotechnological Hubs in Kazakhstan: Developing a Methodological Framework. Eurasian Journal of Economic and Business Studies. 2025;69(3):36-50. https://doi.org/10.47703/ejebs.v69i3.539

Views: 42

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2789-8253 (Print)
ISSN 2789-8261 (Online)