Banking Profitability, Inflation and GDP Relationship: A Monte Carlo Scenario Analysis for Turkey
https://doi.org/10.47703/ejebs.v69i1.479
Abstract
Economic and political catastrophes have a negative impact on the state budget and the banking industry. The purpose of the study is to assess the impact of macroeconomic factors on the profitability of the Turkish banking sector between 2016 and 2023, using the Monte Carlo method. The study uses the Monte Carlo method with 10, 50 and 100 iterations. The simulation is based on empirical data from the Association of Turkish Banks and the Turkish Statistical Institute, including gross domestic product, inflation, return on equity and return on assets. The results of the study showed that, when using the Monte Carlo model with 100 iterations, the values of ROE and ROA show moderate growth (to an average of 27.68% and 46.94%, respectively) under scenarios of strong economic development, despite the continued instability of inflation, which confirms the presence of stable but sensitive dependencies between variables. According to the findings, there will be no essential changes in the values of the Gross Domestic Product, Inflation values of the state, Return on Equity and Return on Assets values of the banking industry unless correlative relations and volatility (standard deviation) scores can not diminish or balance in 10, 50 and 100 iterations. The importance of macroeconomic variables and globalization is presented as a key factor contributing to this situation. On the other side, the period was very hard for Turkey and the banking industry. In the final section, a brief suggestion will be provided in light of the Monte Carlo Simulation Model algorithms.
About the Author
Olcay ÖlçenUnited States
PhD, Email: olcay.olcen@gmail.com
References
1. Akmal, M., ur Rehman, J., & Rashid, A. (2024). Impact of Internal and Macroeconomic Risks on Financial Performance, Growth, and Stability of Domestic and Foreign Banks in Pakistan. Journal of Finance and Accounting Research, 6(1), 28-49. https://doi.org/10.32350/jfar.61.02
2. Akoi, S., & Andrea, S. (2020). The determinants of the performance of the banking sector: evidence from an emerging market. Journal for Social Sciences (MEIJSS), 2(4), 192-202.
3. Aksoy, C. G., Chupilkin, M., Koczan, Z., & Plekhanov, A. (2024). Unearthing the impact of earthquakes: A review of economic and social consequences. Journal of Policy Analysis and Management. https://doi.org/10.1002/pam.22642
4. Alfadli, A., & Rjoub, H. (2020). The impacts of bank-specific, industry-specific and macroeconomic variables on commercial bank financial performance: evidence from the Gulf Cooperation Council countries. Applied Economics Letters, 27(15), 1284-1288. https://doi.org/10.1080/13504851.2019.1676870
5. Alshadadi, M. A., Deshmukh, P. V., & Zaid, M. A. K. (2024). Macroeconomic Factors and the Performance of the Saudi Banking Sector: Does Oil Price Matter?. Studies in Economics and Business Relations, 5(1), 51-65. https://doi.org/10.48185/sebr.v5i1.1119
6. Altay, O. (2021). Sovereign-Bank nexus of Turkey: An analysis of sovereign risk and banking industry performance indicators based on Camels Rating System. Doğuş Üniversitesi Dergisi, 22(2), 217-235. https://doi.org/10.31671/doujournal.973012
7. Arnold, U., & Yildiz, Ö. (2015). Economic risk analysis of decentralized renewable energy infrastructures–A Monte Carlo Simulation approach. Renewable energy, 77, 227-239. https://doi.org/10.1016/j.renene.2014.11.059
8. Atanassov, E., & Dimov, I. T. (2008). What Monte Carlo models can do and cannot do efficiently? Applied Mathematical Modelling, 32(8), 1477-1500. https://doi.org/10.1016/j.apm.2007.04.010
9. Barros, C. P., & Wanke, P. (2014). Banking efficiency in Brazil. Journal of International Financial Markets, Institutions and Money, 28, 54-65. https://doi.org/10.1016/j.intfin.2013.10.004
10. Bonate, P. L. (2001). A brief introduction to Monte Carlo simulation. Clinical pharmacokinetics, 40, 15-22. https://doi.org/10.2165/00003088-200140010-00002
11. Caflisch, R. E. (1998). Monte Carlo and Quasi-Monte Carlo methods. Acta numerica, 7, 1-49. https://doi.org/10.1017/S0962492900002804
12. Caliskan, M. T., & Lecuna, H. K. S. (2020). The determinants of banking sector profitability in Turkey1, 2. Business and Economics Research Journal, 11(1), 161-167.
13. Cariolle, J. (2012). Measuring macroeconomic volatility. FERDI Working Paper Series, 114, 1-49.
14. Carstens, A. (2022). The return of inflation. speech at the International Center for Monetary and Banking Studies, Geneva, 5.
15. Choi, S., Furceri, D., Loungani, P., & Shim, M. (2022). Inflation anchoring and growth: The role of credit constraints. Journal of Economic Dynamics and Control, 134, 104279. https://doi.org/10.1016/j.jedc.2021.104279
16. Colantoni, A., Villarini, M., Monarca, D., Carlini, M., Mosconi, E. M., Bocci, E., & Hamedani, S. R. (2021). Economic analysis and risk assessment of biomass gasification CHP systems of different sizes through Monte Carlo simulation. Energy Reports, 7, 1954-1961. https://doi.org/10.1016/j.egyr.2021.03.028
17. Dang, D. M., Xu, Q., & Wu, S. (2015). Multilevel dimension reduction Monte-Carlo simulation for high-dimensional stochastic models in finance. Procedia Computer Science, 51, 1583-1592. https://doi.org/10.1016/j.procs.2015.05.289
18. Daniell, J. E. (2014). The socioeconomic impact of earthquake disasters. In Earthquake hazard, risk and disasters (pp. 203-236). Academic Press. https://doi.org/10.1016/B978-0-12-394848-9.00009-2
19. Daver, G. (2020). TOPSIS yöntemiyle banka performans analizi: CAMELS bileşenleri temelinde bir önerme. Balıkesir Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 23(43), 181-198. https://doi.org/10.31795/baunsobed.671811
20. Delis, M. D., Iosifidi, M., & Tsionas, M. (2020). Management estimation in banking. European Journal of Operational Research, 284(1), 355-372. https://doi.org/10.1016/j.ejor.2019.12.023
21. Della Posta, P., & Tamborini, R. (2023). Does an inflation target zone help or hinder price stability?. Economic Modelling, 129, 106532. https://doi.org/10.1016/j.econmod.2023.106532
22. Derbali, A. (2021). Determinants of the performance of Moroccan banks. Journal of Business and Socio-economic Development, 1(1), 102-117. https://doi.org/10.1108/JBSED-01-2021-0003
23. Fernandez-Villaverde, J., & Rubio-Ramirez, J. (2010). Macroeconomics and volatility: Data, models (No. 16618). and estimation. Working Paper.
24. Ferson, S. (1996). What Monte Carlo methods cannot do. Human and Ecological Risk Assessment: An International Journal, 2(4), 990-1007. https://doi.org/10.1080/10807039609383659
25. Fratzscher, M., Grosse-Steffen, C., & Rieth, M. (2020). Inflation targeting as a shock absorber. Journal of International Economics, 123, 103308. https://doi.org/10.1016/j.jinteco.2020.103308
26. Ghosh, K., & Mondal (2000), A. Impact of macro-economıc and bank-specıfıc varıables on banks performance: a comparison between private and public sector commercial banks.
27. Glasserman, P., Heidelberger, P., & Shahabuddin (2000), P. Efficient Monte Carlo methods for value-at-risk.
28. Gupta, N., & Mahakud, J. (2020). Ownership, bank size, capitalization and bank performance: Evidence from India. Cogent Economics & Finance, 8(1), 1808282. https://doi.org/10.1080/23322039.2020.1808282
29. Iqbal, R. M., & Purwanto, H. (2022). Risk analysis of investment costs in PPP projects using Monte Carlo simulation. Logic: Jurnal Rancang Bangun dan Teknologi, 22(1), 13-21. https://doi.org/10.31940/logic.v22i1.13-21
30. Islam, M. R. (2023). The Impact of Macroeconomic Factors on Profitability of Commercial Bank in the UK. International Journal For Multidisciplinary Research, 5(1), 1-19.
31. İlarslan, K., & Yıldız, M. (2020). Terörizmin Finansal Piyasalar Üzerindeki Yansımalarının Ardl Sınır Testi Yaklaşımı ile İncelenmesi: 1974-2017 Dönemi Türk Bankacılık Sektörü Üzerine Bir Uygulama. Turkish Studies-Economics, Finance, Politics, 15(4). https://dx.doi.org/10.29228/TurkishStudies.46137
32. Korneyev, M., Berezhniuk, I., Dzhyndzhoian, V., Nebaba, N., & Voytov, S. (2022). Efficiency assessment of banking systems’ performance. Banks and Bank Systems, 17(3), 72-88.
33. http://dx.doi.org/10.21511/bbs.17(3).2022.07
34. Kroese, D. P., & Rubinstein, R. Y. (2012). Monte Carlo methods. Wiley Interdisciplinary Reviews: Computational Statistics, 4(1), 48-58. https://doi.org/10.1002/wics.194
35. Larcher, G., & Leobacher, G. (2005). Quasi-Monte Carlo and Monte Carlo methods and their application in finance. Surveys on Mathematics for Industry, 11(1), 95-30. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7e832a4b6cb65cdcee7d3306fc097ba0d7d081ef
36. Liberati, N. B., & Platen, E. (2004, June). On the efficiency of simplified weak Taylor schemes for Monte Carlo simulation in finance. In International Conference on Computational Science (pp. 771-778). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-25944-2_100
37. Lumiajiak, S., Treepongkaruna, S., Wee, M., & Brooks, R. (2014). Thai financial markets and political change. Journal of Financial Management, Markets and Institutions, 2(1), 5-26. DOI: 10.12831/77234
38. Martínez-Sánchez, J. F., Martínez-Palacios, M. T. V., & Venegas-Martínez, F. (2016). An analysis on operational risk in international banking: A Bayesian approach (2007–2011). Estudios Gerenciales, 32(140), 208-220. https://doi.org/10.1016/j.estger.2016.06.004
39. Ova, A. (2021). Analyzing Financial Performance of Turkish Deposit Banks Using TOPSIS Method. Pamukkale Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, (45), 1-13. https://doi.org/10.30794/pausbed.796587
40. Platon, V., & Constantinescu, A. (2014). Monte Carlo Method in risk analysis for investment projects. Procedia Economics and Finance, 15, 393-400. https://doi.org/10.1016/S2212-5671(14)00463-8
41. Raeside, D. E. (1976). Monte Carlo principles and applications. Physics in Medicine & Biology, 21(2), 181. DOI 10.1088/0031-9155/21/2/001
42. Rahman, H. U., Yousaf, M. W., & Tabassum, N. (2020). Bank-specific and macroeconomic determinants of profitability: A revisit of the Pakistani banking sector under dynamic panel data approach. International Journal of Financial Studies, 8(3), 42. https://doi.org/10.3390/ijfs8030042
43. Rakshit, B. (2023). Assessing the effects of cost, revenue and profit efficiency on bank performance: empirical evidence from Indian banking. International Journal of Organizational Analysis, 31(5), 1867-1898. https://doi.org/10.1108/IJOA-06-2021-2802
44. Raychaudhuri, S. (2008, December). Introduction to Monte Carlo simulation. In 2008 Winter simulation conference (pp. 91-100). IEEE. 10.1109/WSC.2008.4736059
45. Raza, A., Shaikh, A. U. H., Tursoy, T., Almashaqbeh, H. A., & Alkhateeb, S. M. (2022). Empirical analysis of Financial Risk on Bank’s Financial Performance: An Evidence from Turkish Banking Industry. ILMA Journal of Social Sciences & Economics (IJSSE), 1 (3), 16, 38.
46. Saif-Alyousfi, A. Y., Saha, A., Md-Rus, R., & Taufil-Mohd, K. N. (2021). Do oil and gas price shocks have an impact on bank performance?. Journal of Commodity Markets, 22, 100147. https://doi.org/10.1016/j.jcomm.2020.100147
47. Saputra, D., Zukhri, N., Altin, D., Nugroho, A. A., Setiawan, R. D., Fitari, T., & Thohari, M. (2023). Value At Risk Analysis Using Historical Method and Monte Carlo Simulation in Banking and Mining Sector Companies. International Journal of Applied Management and Business, 1(1), 26-31. https://doi.org/10.54099/ijamb.v1i1.436
48. Sayem, M. A., Hasan, M. M., & Joy, M. J. I. (2024). Analyzing the effects of macroeconomic factors on the financial performance of Bangladeshi commercial banks. Can. J. Bus. Inf. Stud, 6(2). doi: 10.34104/cjbis.024.049062.
49. Seyfi-Shishavan, S. A., Gündoğdu, F. K., & Farrokhizadeh, E. (2021). An assessment of the banking industry performance based on the Intuitionistic fuzzy Best-Worst Method and fuzzy inference system. Applied Soft Computing, 113, 107990. https://doi.org/10.1016/j.asoc.2021.107990
50. Shihadeh, F. (2020). The influence of financial inclusion on banks’ performance and risk: new evidence from MENAP. Banks and Bank Systems, 15(1), 59. http://dx.doi.org/10.21511/bbs.15(1).2020.07
51. Shinozuka, M., Rose, A., & Eguchi, R. T. (1998). Engineering and socioeconomic impacts of earthquakes. Buffalo: MCEER.
52. Shrestha, P. M. (2023). Examining the Factors Affecting the Profitability of Commercial Banks. Journal of Mathematics Instruction, Social Research and Opinion, 2(2), 105-114. https://doi.org/10.58421/misro.v2i2.86
53. Suwanprasert, W. (2024). The Effects of US Sanctions on Thailand's Exports after the 2014 Military Coup: Evidence from the Synthetic Control Method. Available at SSRN 4859155.
54. Tzeng, K. Y. (2023). Forecasting Volatilities of Asian Markets Using US Macroeconomic Variables. Emerging Markets Finance and Trade, 59(3), 676-687. https://doi.org/10.1080/1540496X.2022.2119808
55. Ulusoy, A. (2021). Türk bankacılık sisteminde kârlılık üzerinde etkili olan faktörlerin belirlenmesi. Bankacılık ve Sermaye Piyasası Araştırmaları Dergisi, 5(11), 20-48.
56. Uslu, H. (2022). The role of intellectual capital in financial development: evidence from the banking sector of Turkey. Competitiveness Review: An International Business Journal, 32(2), 230-249. https://doi.org/10.1108/CR-06-2020-0084
57. Wu, Q., & Cole, R. A. (2024). Macroeconomic conditions and bank failure. Journal of Forecasting. https://doi.org/10.1002/for.3066
58. Yakubu, I. N., & Bunyaminu, A. (2024). Bank profitability in Sub-Saharan Africa: does economic globalization matter? Journal of Economic and Administrative Sciences, 40(3), 673-683. https://doi.org/10.1108/JEAS-08-2021-0158
59. Zaman, M. B., Priyanta, D., & Trisilo, F. (2017). Risk assessment in financial feasibility of tanker project using Monte Carlo simulation. International Journal of Marine Engineering Innovation and Research, 1(4). https://doi.org/10.12962/J25481479.V1I4.2703
Review
For citations:
Ölçen O. Banking Profitability, Inflation and GDP Relationship: A Monte Carlo Scenario Analysis for Turkey. Eurasian Journal of Economic and Business Studies. 2025;69(1):111–125. https://doi.org/10.47703/ejebs.v69i1.479
JATS XML








